Open-Loop and Closed-Loop Solvabilities for Stochastic Linear Quadratic Optimal Control Problems of Markov Regime-Switching System
时间: 2019-04-11  作者:   浏览次数: 1067

目:Open-Loop and Closed-Loop Solvabilities for Stochastic Linear Quadratic Optimal Control Problems of Markov Regime-Switching System

报告人:张鑫 东南大学教授

时间:2019.04.12(周五) 15:00-16:00

地点:金融工程研究中心105

摘要:We investigate the stochastic linear quadratic (LQ, for short) optimal control problem of Markov regime switching system. The representation of the cost functional for the stochastic LQ optimal control problem of Markov regime switching system is derived using the technique of Itô’s formula. For the stochastic LQ optimal control problem of Markov regime switching system, we establish the equivalence

between the open-loop (closed-loop) solvability and the existence of an adapted solution to the corresponding forward-backward stochastic differential equation with constraint (the existence of a regular solution to the Riccati equation). Also, we analyze the interrelationship between the strongly regular solvability of the Riccati equation and the uniform convexity of the cost functional.

  

报告人简介:张鑫,东南大学硕士生导师,20097月毕业于南开大学数学科学学院,2011年在澳大利亚麦考瑞大学做博士后研究。自2006年攻读博士学位以来,主要从事带马氏调节随机过程在金融保险中的应用方面的研究。并分别于2010年、2013年和2017年三次获得国家自然科学基金面上项目的资助,其中一项为青年-面上连续资助项目(该项目中标率将为当年结题的青年基金项目的5%),在国外重要学术期刊美国工业与应用数学学会运筹与控制杂志、应用概率与统计杂志、概率统计通讯、保险:数学与经济杂志等期刊上发表20余篇论文。